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ABSTRACT
Yield analysis is one of the key concerns in the fabrication of semiconductor wafers. An effective
yield analysis model will contribute to production planning and control, cost reductions and the
enhanced competitiveness of enterprises. In this article, we propose a novel discrete spatial model
based on defect data on wafer maps for analyzing and predicting wafer yields at different chip loca-
tions. More specifically, based on a Bayesian framework, we propose a hierarchical generalized lin-
ear mixed model, which incorporates both global trends and spatially correlated effects to character-
ize wafer yields with clustered defects. Both real and simulated data are used to validate the perfor-
mance of the proposed model. The experimental results show that the newly proposed model offers
an improved fit to spatially correlated wafer map data.

Introduction

Integrated circuits (ICs) are some of the most wildly
used electronic components in industrial production
and daily life. As realizations of ICs, chips are sets of
electronic circuits that are interconnected on semicon-
ductor material plates (wafers) to fulfill complex elec-
tronic functions. The relationship between a semicon-
ductor wafer and the IC chips that are produced from
it is illustrated in Figure 1. Through a series of complex
production procedures, hundreds or even thousands
of chips, such as memory, microcomputers, and sen-
sors, can be simultaneously fabricated on the same sili-
con wafer. With the rapid development of fabrication
techniques, the integration scale of modern ICs has
become extremely large. In recent decades, themodern
IC production scale has continued to increase and has
reached the level of billions (Schaller 1997; Thompson
and Parthasarathy 2006).

However, since the fabrication of the first generation
of such chips in the 1960s, the difficulties encountered
in chip production have never been entirely overcome
and, indeed, have become more challenging. Improv-
ing yield is still critical for enhancing manufacturing
performance. Weber (2004) proposed a model that
aligns yield with profitability. Milor (2013) attributed
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, China.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lqen.

a firm yield concern to the short life cycles and rapid
price decline in the chip industry. The author also
noted that, with the same cost of materials and time,
a higher yield is equal to greater revenue. Fabricat-
ing a chip on a wafer requires hundreds of physical
and chemical steps and weeks or months of time. As
observed byMaly et al. (2006), the variability in a man-
ufacturing process is usually the primary reason for
the production of nonconforming chips. In a memory
production process, nonconforming chips are identi-
fied in a functional testing step before packaging; defec-
tive chips can then be plotted on a colored wafer map.
These wafer maps help technicians to diagnose abnor-
mal failure patterns and explore potential root causes of
failures.

The occurrence of noncomforming chips directly
affects the yield of a process, which is critical for pro-
duction productivity, material planning and quality
control. Accurate yield prediction is always appealing
for proper production planning and control (Joseph
and Adya 2002). In wafer fabrication, yield is com-
monly defined as the proportion of the total number of
chips that are successfully produced. Many researchers
have proposed different yield models for process char-
acterization and other purposes. In general, yield losses
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Figure . Relationship between semiconductor wafer (left) and IC
chip (right).

can be regarded as the product of four components: the
wafer process yield Ywp, referring to the percentage of
wafers arriving at the wafer probe step; the wafer probe
yieldYcp, referring to the percentage that pass the probe
step; the assembly yieldYap, associated with the assem-
bly process; and the final test yieldYf t , referring to the
percentage that survive through the final electrical test
(Kuo and Kim 1999). Figure 2 summarizes these four
yield losses in a flow chart.

Thus, the overall yield can be expressed as the prod-
uct of the above components:

Ytotal = YwpYcpYapYf t . [1]

Among these four components, the yield loss from
the wafer probe step is the highest in the chip fabri-
cation process (Milor 2013). In the wafer probe step,
chips may fail to pass the necessary functional tests
because of open circuits, short circuits or other causes
(Kumar et al. 2006). Further studies of failure patterns
reveal that losses identified in the probe step can be
divided into two types: losses related to gross defor-
mation in continuous regions and losses arising from
random local deformations at specific sites (Mirza et al.
1995). In the literature, these failures have been treated
differently.

Wafer probe yield models for random failures are
usually constructed under the assumption of spatial
independence among chips on a wafer; the distri-
butions of conforming and nonconforming chips are
assumed to be identical and independent, regardless
of their spatial locations. Based on this assumption,

several statistical yield models have been proposed and
widely used in previous research focusing on the wafer
probe yield to monitor the process and to predict the
level of production capability. The Poisson model and
the negative binomial model have been the most com-
monly used models for this purpose.

The Poisson yield model assumes that the defect
number on every chip follows a Poisson distribution
with a fixed parameter. If the parameter λ of this Pois-
son distribution is known, the probability that any spe-
cific chip contains x defects can be obtained as follows:

P(x) = e−xλx

x!
, x = 0, 1, 2, . . . [2]

Chips that contain zero defects are conforming and
are included in the numerator for calculating the wafer
probe yield. However, extensive engineering practice
implies that the process conditions for adjacent chips
on a wafer, such as the temperature and pressure in a
local area, should usually be similar; thus, the defec-
tive chips on a wafer are likely to occur with a cer-
tain clustering tendency rather than entirely randomly
and independently. Kuo and Kim (1999) showed that,
when certain spatial patterns occur, a Poisson distri-
bution underestimates the observed yield because it
fails to consider any spatial information about a wafer.
Figure 3 shows sixteen roundwafermaps obtained after
the wafer probe stage. Black dots in each map indicate
defective chips. Many of the maps exhibit clustering in
their defect patterns, whereas only a few do not exhibit
such clustering.

To partially overcome this problem, the negative
binomial (NB) model has been proposed to capture
the clustering phenomenon (Kumar et al. 2006). Under
the NB model, the occurrence probability of an event
increases with other existing occurrences in the sur-
rounding area. It is assumed that the density of defects
D is a random variable that follows a gamma distribu-
tion with parameters α and β :

f (D) = Dα−1e−D/β

�(α)βα
, [3]

where α is the shape parameter and β is the scale
parameter. Then, the probability that a specific location

Figure . Four types of yield losses corresponding to different steps of the manufacturing process.
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Figure . Real wafermaps indicating the yield on each chip, where
defective chips are marked with black dots.

contains x defects is

P(x) =
∫ ∞

0

e−DDx

x!
Dα−1e−D/β

�(α)βα
dD. [4]

Although the negative binomial model is signifi-
cantly more flexible than the Poisson model, a univari-
ate gamma distribution still fails to capture the spa-
tial correlations among the defect densities at different
location. A multivariate gamma distribution, however,
will produce conceptual and computational difficulties
(Banerjee et al. 2014).

As an alternative to the NB model, zero-inflated
models are another commonly used type of model.
These models are designed to address dominant zeros
in datasets, which can be regarded as a coupled prob-
lem of clustered defects. Since the introduction of zero-
inflated Poisson (ZIP) regression by Lambert (1992),
various zero-inflated models have been proposed to fit
data with many zero values such as the zero-inflated
Poisson (ZIP) model, the zero-inflated binomial (ZIB)
model and the zero-inflated negative binomial (ZINB)
model (Yau and Lee 2001; Fatahi et al. 2012; He et al.
2012). Zero-inflated models are constructed based on
the assumption that there is a random shock leading to
a Poisson or NB process and that this random shock
occurs independently with probability p.

However, in a wafer fabrication process, real data
present a two-dimensional spatial structure. Specifi-
cally, both conforming and nonconforming chips are
counted from die to die, and dies are spatially corre-
lated with each other in a lattice on a wafer. One cannot
ignore the fact that chips are fabricated simultaneously
and geographically adjacent. Although zero-inflated
models are useful for fitting certain types of data rele-
vant to chip production, these models still ignore the
spatial correlation between a chip and its neighbors.
Considerable evidence shows that proximity implies
correlation (Hansen et al. 1997; Hwang and Kuo 2007).
It has also been shown that the defect density presents
a significant radial dependency on the location (Ferris-
Prabhu et al. 1987). In the study of Meyer and Pradhan
(1989), a center-satellite model is discussed to describe
the clustered distribution of defects. Stine et al. (1997)
proposed a model that extracts die-level, wafer-level,
and die-wafer interactions from the raw data. Chen and
Liu (2000) applied an ART1 neural network to rec-
ognize the spatial defect pattern, and Di Palma et al.
(2005) performed unsupervised spatial pattern classi-
fication. Kim et al. (2016) developed a step-down spa-
tial randomness test based on multiple spatial fail bin
testmaps. Although pattern classification has become a
major branch of research for discriminating wafer fail-
ures, it still cannot relate the yield information at a par-
ticular site to its location.

Despite the lack of spatial autocorrelation analysis
in yield modeling, autocorrelation has been considered
in the context of the continuous-spatial statistical qual-
ity control field. For themodeling of continuous spatial
data, models have been proposed that incorporate both
spatial and non-spatial components (Bao et al. 2014).
However, such models cannot be applied to the dis-
crete spatial data that are naturally collected in wafer
yield studies. The phenomenon of the spatial clustering
of data has also been studied and modeled from many
perspectives such as the estimation of the profiles of
major pollution. However, in semiconductor produc-
tion and other quality management fields, this type of
analysis is mainly used for defect pattern classification
(Hwang and Kuo 2007).

In the literature, the mixed modeling of random
spatial effects has gradually attracted the interest of
researchers. Diggle et al. (1998) summarized the avail-
able geostatistical prediction models; many followed
this framework and considered the need for an a priori
correlated process. Such models are usually written



172 H. WANG ET AL.

in the form of a generalized linear mixed model
(GLMM), which is an extension of a generalized linear
(GL) model. In recent years, mixed models have been
widely used in geostatistics and biometric studies.
Krueger and Montgomery (2014) proposed a GLMM
model in which the random effects of sampling plans
are considered. In their model, the random errors from
observations within and between groups are described
using a batch-specific model that produces estimates
of the mean after the link function transformation.

In this article, we propose a new spatial model for
analyzing and predicting the wafer probe yield based
on discrete spatial data. The new model combines the
consideration of the spatial coordinates and random
spatial errors to capture both the macro-scale tenden-
cies and micro-scale correlations of a wafer map. A
Bayesian hierarchical structure is introduced in our
study to endow the model with flexibility. Both simu-
lated and real datasets are tested against the proposed
model; the results show that the new model performs
better than previous models.

The remainder of this article is organized as fol-
lows. In the second section, we introduce our pro-
posed model for yield prediction. As an innovative fea-
ture of our yield model, the mechanism and imple-
mentation of the intrinsic conditional autoregressive
component will be illustrated in detail. In the third
section, we assess the performance of the proposed
model using real datasets and compare our model
with existing models. In the fourth section, the model
is thoroughly evaluated using more extensive sim-
ulated datasets. Finally, the last section summarizes
this study and presents interesting topics for further
research.

Hierarchical GLmodel with spatial coordinates
and iCAR components

Previous GLmodel with spatial coordinates: GLSp

Before presenting our model, we briefly introduce a
model that considered spatial information. Bae et al.
(2007) first used spatial polar coordinates to incor-
porate spatial information for a single wafer map. In
their study, the authors constructed a generalized linear
model with spatial coordinates to capture the macro-
scale tendency of variations in the defect density; the
model was constructed on a single wafer, and they

adopted frequent models. Yuan et al. (2011) extended
the study of Bae et al. (2007) by adopting a Bayesian
framework. Another difference is that they considered
variations not only within a single wafer but also across
several wafers.

In the study of Bae et al. (2007), the model was con-
structed on a single wafer, and they did not adopt hier-
archical Bayesian models. Instead, they chose the tra-
ditional frequent model and the EM algorithm to solve
the problem.

The density of the Poisson yieldmodel is assumed to
be of the form

log(λi) = f (X i)β, i = 1, 2, . . . n, [5]

where λi is the expected number (density) of defects
and f (X i) is a function of the chip’s polar coordinates
Xi = [r, θ] at the ith location. As shown above, because
of the underlying physical mechanisms of their forma-
tion, defects often cluster in the center of the wafer
and may exhibit a radially increasing pattern. There-
fore, polar coordinates have a considerable advantage
over Cartesian coordinates, although it is possible to
convert from one to the other. Considering interaction
effects,

f (X i) = [ri, cosi, sini, ricosi, risini]. [6]

In our research, we choose to reconstruct Bae
et al. (2007)’s Poisson model in a Bayesian frame-
work (hereinafter referred to as the GLsp model),
which is a special case of Yuan et al. (2011)’s work,
as a benchmark. The proposed model is also under
Bayesian framework. The model evaluation and com-
parison are between these two hierarchical Bayesian
models.

The reason why we choose Poisson distribution
is that, first, zero-inflated models and our proposed
model shares same property of allowing more zeros
in the observed data and second, compared with
zero-inflated models, our proposed model could cap-
ture more spatial information. Third, the imple-
mentation of zero-inflated models will encounter
with some problems. In addition, in the motiva-
tion project of our research, the observed data do
not always present significant “zero-inflated” pattern,
but sometimes contains only a small percentage of
“zeros.”
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Hierarchical GLmixedmodel with spatial
coordinates and intrinsic conditional autoregressive
components: GLSp-iCAR

Similar to the spatialmodel study proposed by Bae et al.
(2007), this study focuses on a yield model for a single
wafer. The new model has a Bayesian structure, which
offers reasonable flexibility in combining information
from different sources; a spatial Gaussian Markov ran-
dom field (GMRF) is used to capture spatial autocorre-
lations among sites.

In our proposed model, a spatial random com-
ponent introduces enough variations for the Pois-
son distributions. In “zero clustered regions,” the spa-
tial dependence will be relatively high, and log(λi) =
f (X )β + si will be affected by si. Thus, log(λi) in this
region could be a sufficiently small negative value,
which corresponds to a nearly zero Poisson rate at chip
location i. By adding spatial components, the over-
dispersion phenomenon in observed data can be effec-
tively captured.

In the following, we construct our hierarchical
model in three stages. In the first stage, we use Pois-
son distributions to fit the observations Y , where yi
depends on the latent variable λi. In the second stage,
we assign a generalized linear mixed model to λi with
a GMRF as the prior. In the third stage, unknown prior
parameters are assigned.

At stage 1, we assume that the number of defects at
the ith chip location on the wafer, Yi, has an indepen-
dent Poisson distribution given the densityλi. Note that
other distributionmodels are also applicable here.Now,
for a total of n sites on a wafer map, the numbers of
defect occurrence are dominated by n different Poisson
processes:

STAGE 1: Yi ∼ Poisson(λi), i = 1, 2, . . . , n. [7]

In stage 2, we further assume that the density of
this Poisson distribution is influenced by both its polar
coordinates, exhibiting large-scale effects, and random
spatial effects that can be interpreted in terms of inter-
related micro-scale shifts. The expected values of the
observed data are linearly related to some predictive
variables via a link function:

STAGE 2.A : log(λi) = f (X i)β + si, i = 1, 2, . . . , n, [8]

where X i = [ri, θi] represents the polar coordinates
of the ith location on the wafer and f (X i) = [1,
xi1, xi2, . . . , xim], the new predictive variables, is a

function of polar coordinates and has a linear rela-
tion with the logarithm of the density λi. Here, we
follow the work of Bae et al. (2007) and set f (X i) =
[1, ri, cosi, sini, ricosi, risini]. β = [β0, β1, . . . , βm]T is
the regression parameter of interest, which reflects a
large-scale spatial tendency across the wafer. si repre-
sents random effects on location i depending on the
neighborhood of the site and is characterized by an
autoregressive property.

Without random spatial effects, the density of the
Poisson process at any location depends only on its
linear predictive variables f (X ) and coefficients β,
as we assume that the spatial tendency parameters β

are unknown but deterministic for a particular wafer.
However, sometimes, the real spatial pattern character-
istics are not fully consistent with the macro-scale ten-
dency assumed by this coordinates structure, in which
i is a site on a continuous and very smooth curved
surface. To include the influence of local shifts in the
model, we assume here that there exist not only a
macro-scale tendency but also a local variation (usu-
ally manifesting as local clustering), which is reflected
by the random spatial error si. Thus, the macro-scale
tendency and local clustering phenomena can be cap-
tured simultaneously at stage 2.

In a continuousmodel, random spatial effects can be
modeled using a Gaussian randomfield. In our discrete
data model, we adopted a GMRF (Gaussian Markov
Random Field) to model spatial dependence because
the data are observed on a lattice structure, and the
GMRF can simplify the estimation of parameters by
defining a sparse precision matrix Q.

Here, we use intrinsic GMRFs, also called condi-
tional autoregression (CAR) (Besag 1974, 1975), si ∼
car(κ), to depict the local variation and model the
spatially dependent correlation. Markov random fields
have previously been used to depict the clustering
of random defects (Hansen et al. 1997). An intrinsic
GMRF differs with a GMRF in that it does not use
full-rank precision matrices, although the form of its
definition is otherwise quiet similar. The random spa-
tial components s = [s1, s2, . . . , sn]T are defined with
respect to an undirected graph G = (V,E)

, whose
density function can be expressed in the following
form:

π(s) = (2π)−n/2(|Q|∗)1/2

× exp
(

−1
2
(s − μ)TQ(s − μ)

)
, [9]
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Figure . Neighborhood structure of the intrinsic GMRF on awafer
map; the light gray [blue] lattice sites are those designated as
neighbors.

where μ is the mean vector and Q is the inverse of
the symmetric semi-positive definite covariancematrix
�. The precision matrix Q plays a significant role
in our study because it yields an intuitive interpreta-
tion of neighborhood structures and the conditional
independence properties of s. Qi j = 1 if i and j are
connected with each other. For a first-order intrinsic
GMRF, we designate a structure for Q such that, for all
i,

∑
j Qi j = 0, which leads to a rank deficiency of the

precision matrix. |Q|∗ therefore becomes a generalized
determinate. Here, “first order” refers to the following
neighborhood structure selection strategy (Besag and
Kooperberg 1995): let ni denote the number of neigh-
bors of chip i at location i, where only those sites that
share an edgewith the site of interest on the latticewafer
map are defined as neighbors, as shown in Figure 4.
Then, the precisionmatrixQ of this first-order intrinsic
GMRF is defined as

Qi j = κ

⎧⎨
⎩
ni i = j,
−1 i ∼ j,
0 otherwise,

[10]

where κ is the random precision parameter of interest
and the basic components of Q can be easily generated
from the lattice wafer map.

From the above definition of the precision matrix,
we can easily obtain

STAGE 2.B : si|s−i, κ ∼ N

⎛
⎝ 1
ni

∑
j: j∼i

s j,
1
niκ

⎞
⎠ ,

i = 1, 2, . . . , n. [11]

The Markov property, si ⊥ s−{i,nei(i)}|snei(i), can be
proven. Specifically, given all the neighbors’ random
effect values of si, si is conditionally independent of the
non-neighbor nodes on the graph (Rue andHeld 2005).

Some of the properties of the GMRF are listed below:

E(si|s−i) = μi − 1
Qii

∑
j: j∼i

Qi j(s j − μ j),

Prec(si|s−i) = Qii and

Corr(si, s j|s−i j) = − Qi j√
QiiQj j

, i �= j. [12]

By incorporating the intrinsic GMRF, we introduce
a spatial correlation si into our model after defin-
ing “neighbors” for every chip. Because our research
focuses on a regular wafer map, which is a lattice
system, a first-order neighborhood can be established
without much effort. Thus, s follows a multivariate
normal distribution with a specified covariance struc-
ture. The sparse matrix Q leads to the Markov prop-
erty, which is highly convenient for the computation of
parameters.

In stage 3, the prior distributions are prescribed by
prior information. The unknown parameters include
the regression parameter β and the random effect pre-
cision parameter κ . Because the reciprocal of κ , 1

κ
,

reflects the scale of covariance, we define τ 2 = 1
κ
for

defining the priors:

STAGE 3.A: β j ∼ N(mj, v j), j = 1, 2, . . . ,m
STAGE 3.B: τ 2 ∼ Inv − Gamma(a, b), [13]

where τ 2 is assigned an inverse-Gamma distribution.
Thus, in prior, the precision parameter κ has a Gamma
distribution. For generality, we set a = 1 and b = 1.
An alternative is to use a uniform prior distribution
U (0,Mτ ) on an appropriate interval. β has indepen-
dent Gaussian priors, wheremj = 0 and v j = 1000, in
our formulation.

Because β is also a GMRF with diagonal covariance
and precision matrices, in the computation, we define
an (n + m)-dimension GMRFw = (s, β)T , which still
has a sparse structure.

As the model is constructed under conditional
framework, the common method used to estimate
the parameters changes from the EM method to the
Markov Chain Monte Carlo (MCMC) method under
the above Bayesian structure. The MCMC method
begins from an arbitrary value, generalizes proposed
values until the Markov chain converges to the tar-
get distribution π() and then samples from the stable
posterior distribution (Mengersen et al. 1999). Com-
pared to other geostatistical models, the GMRF is very
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Figure . Hierarchical structure of the parameters in different
stages.

computationally convenient. We can find the poste-
rior distribution of s using a conditional sampling algo-
rithm. The hierarchical structure of the parameters is
shown in Figure 5.

As the problem size increases, the factorization of
the precision matrix Q will become more time con-
suming. However, due to the sparse property of the
precision matrix Q, computing the factorization of Q
only requiresO(n3/2) instead ofO(n3)flops. A compu-
tationally efficient alternative to MCMC is Integrated
Nested Laplace Approximations (INLA), which pro-
vide a higher calculation speed O(nlog(n)2) with rea-
sonable accuracy (Held et al. 2010). Because the INLA
approach produces a numerical approximation to the
posteriors of interest and because the MCMC algo-
rithm will guarantee the correct answer in the end, we
did not adopt this method in our research. However,
when the data size becomes extremely large, we could
adopt the INLA method to obtain effective estimates.
One real application example is the case where, if we
use an ordinary PC to run the MCMCmethod for a 20
× 20wafermap, the algorithmfinisheswithin aminute.
If the INLA method is applied to a wafer with 1,460
lattices, the algorithm finishes within only several sec-
onds.

Implementation of the proposedmodel
on a typical dataset

In this section, we employ a real wafer map (Real-
Data) and three typical maps (DATA-2, DATA-3, and

DATA-4) simulated in the study of Bae et al. (2007) to
demonstrate the advantages of the novel model over
previous models.

First, we present the regression results for RealData,
which originates from the research of Tyagi and Bay-
oumi (1994). As Figure 6a shows, the defect clustering
is significant near the corners and forms a continuous
region from the center to the lower left.

As mentioned earlier, the proposed GLSp-iCAR
model is distinguished from theGLSpmodel by its con-
sideration of spatial random error. As an improvement
over independent random error, the spatial correlation
component acts as an excellent adjustment for local
clustering. Using the CARBayes package in the R lan-
guage, we can obtain the parameter estimates for both
models.We burn in the first 5,000 samples of the 20,000
total samples. The point estimates and the confidence
intervals are shown in Table 1.

The acceptance rate of the Metropolis-Hastings
algorithm is approximately 40%, which implies a bal-
ance between distribution sampling and efficiency. The
value of τ 2 in the GLSp-icar model reflects the level of
spatial variance, whereas the value of τ 2 in the GLSp
model reflects only the level of global heterogeneity
accounting for clustering.

The results of applyingMoran’s I test to the residuals
of the two models show that the GLSp-iCAR model
explains more of the spatial dependency than does
the GLSp model. The value of Moran’s I statistic for
the GLSp model is two times larger than that for the
GLSp-iCAR model, confirming the weaker fitting
performance achieved using only spatial coordinates.
The results are shown in Table 2.

In addition, if we plot the linearly fitted predic-
tors f (X i)β̂, the posterior mean of the spatial cor-
relation component s, and the total fitted log(λ̂) =
f (X i)β̂ + s together, as shown in Figure 7, we find
that, without s, the fitted surface is rather smooth and
therefore cannot effectively reflect the spatial clustering
patterns.

In Table 3, the level of τ 2 when applying the GLSp-
iCAR and GLSp models to the other three simulated
datasets is shown. The defects are randomly scattered
on wafer map DATA-2 with clustering, show ringlike
patterns on wafer map DATA-3, and are clustered in
the bottom right on wafer map DATA-4. Note that, for
DATA-2, the posterior median of τ 2 is relatively large
compared with the others. This may be interpreted as
the result of sudden local turbulence producing some
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Figure . Real wafer map and typical simulated wafer map showing defect pattern and numbers for each chip.

extreme value, as well as the smaller clustering area. For
DATA-3, the defect clustering area is also small, leading
to a somewhat large τ 2. By contrast, in DATA-4, it is
evident that the structure of the macro-scale tendency

Table . MCMC results for GLSp-iCAR andGLSpmodel on real data.

GLSp-iCAR Median .% .% accept

Intercept − . − . − . 
r − . − . − . 
sin − . − . . 
cos . . . 
rsin . − . . 
rcos − . − . . 
τ 2 . . . 

GLSp Median .% .% accept

Intercept − . − . − . .
r . − . . .
sin − . − . − . .
cos . − . . .
rsin . . . .
rcos − . − . − . .
τ 2 . . . .

Table . Moran I statistic under randomization for residuals in two
models.

GLSp-iCAR Moran I GLSp Moran I Expectation Variance

. . − . .

is sufficient to explain the defect pattern. As a result,
both the GLSp-iCAR and GLSp models return small
estimates of τ 2.

A comparison of the deviance information crite-
ria (DIC) values for the four datasets is presented
in Table 4. The DIC index is one of the most pop-
ular criteria used in Bayesian MCMC computations
(Millar 2009; Linde 2005). Because the effective

Table . MCMC results for the GLSp-iCAR and GLSp models on
Data-, Data-, and Data-.

− Median .% .% accept

τ 2(GLSp-iCAR) . . . .
τ 2(GLSp) . . . .
τ 2(GLSp-iCAR) . . . .
τ 2(GLSp) . . . .
τ 2(GLSp-iCAR) . . . .
τ 2(GLSp) . . . .

Table . DIC values for the GLSp-iCAR models on real data and on
Data-, Data-, and Data-.

− RealData DATA- DATA- DATA- Mean

GLSp-iCAR . . . . .
GLSp . . . . .
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Figure . (a) linear fittedpredictors f (X i)β̂, (b) posteriormeanof spatial correlation component s, and (c) total fitted log(λ) = f(X i)β̂ + s.

number of parameters pD[y, 
,E(θ |y)] is denoted by
pD = D̄θ − D(θ̄ )

= Eθ |y{−2logL(y|θ )} + 2log[P(y|E(θ |y))]
[14]

we can obtain the DIC value by D̄θ = D(θ̄ ) + pD,
which can be interpreted as a classical deviance mea-
sure plus a measure of complexity (Spiegelhalter et al.
2002).

The DIC provides an efficient means of quantita-
tively evaluating the fit performance of these twomod-
els. A smaller DIC value indicates a better model fit.
Except for DATA-4, which presents a visibly continu-
ous and smooth defect pattern, our GLSp-iCARmodel
achieves better performance than does theGLSpmodel
for all datasets. Table 4 shows that its application to the
real data results in a significant decrease in the DIC.
To verify the superiority of the proposed model and
explore the influence of the spatial clustering pattern
on ourmodel, in the next section, we present numerical
experiments conducted using a large number of simu-
lated datasets.

Simulation experiments comparing
the performance of the GLSp-iCAR
and GLSpmodels

To obtain a better understanding of the performance
of the GLSp-iCAR and GLSp models, in this sec-
tion, we use simulated data to conduct more exten-
sive studies. The main reason of using a square wafer
map in this article is for the convenience of per-
formance comparison. However, it should be noted
that our proposed model can be applied to round-
shape wafer map directly without any modification.
More specifically, in GMRF the model for stage 3,
the shape of the map is uniquely characterized by
a “neighbourhood structure.” Therefore, the GMRF
is in fact capable of handling any arbitrary map
shapes.

We simulate spatially correlated defect data on a
20 × 20 wafer map. Each small square on the map rep-
resents a chip, and the number on each square indicates
the corresponding generated “defect” count. Following
the Bayesian framework, we generate the Poisson den-
sities for 400 different lattices.
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Figure . Different defect generation on the wafer map: (a) with and (b) without spatial correlation components si, where a = 1.6 and
b = 0.5.

For the residuals in the stage 2 model, we sim-
ply assume i.i.d. normal distributions N(μi, σ

2
i ) and

fix the variance at σ 2
i = 0.5 and the mean at μi = 0.

Because the residuals are not the focus of our study,
we do not vary these parameter settings during the
experiments.

For the random spatial effects, we adopt a multinor-
mal distribution s ∼ N(0, �), with the components of
the correlation matrix defined as

�i j = a · exp{−b · Distance(i, j)}
a ∈ {0.1, 0.4, 0.7, 1.0, 1.3, 1.6}
b ∈ {0.1, 0.5, 0.9}. [15]

Note that this formulation of the random spatial
effects is different from the assumption adopted for
the model in the second section because the covari-
ance matrix is no longer sparse. According to our
first-order GMRF model described in the second sec-
tion, a component of the precision matrix is zero if
the two corresponding chips are not adjacent, whereas
the strength of the relationship between two chips is
related to distance in the model used for data genera-
tion. Here, we can vary the values of a and b to generate
different types of variations in the spatial correlation.
As a increases, the correlation coefficient between any
pair of “neighbors” becomes larger, whereas the cor-
relation decreases more rapidly with distance when b
increases.

Once the random effects have been produced, we set
the coefficients for the coordinates

β = β0, β1, β2, β3, β4, β5, ]T

= [0, −0.05, 0.1, −0.1, −0.05, −0.05]T [16]

and generate the logarithm of the density at each
location:

η = log(λi)

= f (X )β + si + μi

= β0 + riβ1 + cosiβ2 + siniβ3 + ricosiβ4

+ risiniβ5 + si + μi. [17]

Figure 8 provides an example of how the random
spatial effect component si influences the defect gen-
eration. It can first be observed that, because of the
chosen global trend parameters β, the defect rate
increases toward the top and right of the wafer. More-
over, it is obvious that including random spatial errors
in the density function leads to more highly clustered
continuous regions of non-defective and defective
chips, as seen in (a), whereas the defects generated
without spatial correlation tend to exhibit a more
sporadic distribution, as shown in (b). When a = 1.6
and b = 0.5, the number of defects on a chip can be
greater than 10 with the inclusion of spatial correlation
components, which indicates a higher defect rate in the
defective region comparedwith the casewithout spatial
correlation.

From Figure 9, the previous observation regarding
the spatial components is further confirmed. Figure 9
shows various realizations of defect generation on
the wafer map with different values of a and b. The
results for {a = 0.1, b = 0.9} present the smallest spa-
tial effects, and those for {a = 1.6, b = 0.1} present the
largest spatial effects. We find that, if b is restricted
to 0.1, the defects on the wafer map will occur in a
broader continuous defective region as the parameter
a is increased from 0.1 to 1.6. If b is restricted to 0.5,
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Figure . Various defect realizations on the wafer map for different values of a and b.

the defect pattern will transition to a curve or even
a dot type as a increases. This phenomenon probably
arises because of the rapid decrease in spatial correla-
tion. Below, we demonstrate that excessively large val-
ues of b sometime cause poorer performance in simu-
lation experiments.

By applying the different parameter settings for a
and b defined in Eq. [15], we generate a total of 18
groups of defect-containing wafer maps, each consist-
ing of 500 random samples. For each group, we apply
the previous independent model (GLSp) and the pro-
posed spatial model (GLSp-iCAR) to fit the data. The
averageDIC values are calculated to evaluate the fit per-
formance of each model, and the results are presented
in Table 5. According to Table 5, a deceasing trend in

the DIC values from the independent model to the
proposed spatial model can be observed. With the
exception of the small shift in {a = 0.1}, all the exper-
imental groups show an obvious decrease in the DIC
value with the implementation of the proposed model.
The differences in performance between the two
models confirm the improvement achieved with the
proposed model.

Figure 10 also illustrates the average performances
under different parameter settings. It confirms the pre-
vious observation that, most of the time, the pro-
posed model will at least not exhibit worse perfor-
mance than the previous model, even if it does not
achieve any improvement. With an increase in a, the
average decrease in the DIC value may be as high as 60.
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Table . Average DIC values in simulation experiments on differ-
ent spatially correlated data.

b=. GLSp-iCAR model GLSp model (Baseline) Change in DIC

a= . . . .
a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .

b= . GLSp-iCAR model GLSp model (Baseline) Change in DIC

a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .

b= . GLSp-iCAR model GLSp model (Baseline) Change in DIC

a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .
a= . . . − .

In addition, the decreasing trend between b = 0.1 and
b = 0.5 is more linear than that up to b = 0.9, which
suggests that, without a large-scale neighborhood
relation in the wafer map data, the new model will not
provide a significant enhancement.

Taken together, the above results suggest that the fit-
ting performance of the proposed spatial model tends
to be better than that of the previous model in most
situations in which spatial correlation is present in the
wafer map. The model that considers random spatial
correlation performs better than the model based on
only coordinate predictors. Moreover, when the spatial
dependence is larger, the performance of the proposed
model will be improved.

Figure . Average DIC values decrease under  simulation
experiments, compared with GLSp models.

Conclusion

The spatial patterns characterizing wafer maps contain
valuable information about potential manufacturing
problems and will influence the final yield for a given
wafer. In this study, a novel spatial model is proposed
that can be viewed as an extension of the model pro-
posed by Bae et al. (2007) and Yuan et al. (2011), which
directly considers the spatial coordinate structure as
prediction variables. In our model, the addition of
random spatial effects enhances the model’s flexibil-
ity in addressing local shifts or local clustering in a
wafer map.

The advantages of including the spatially depen-
dent errors were first confirmed through the applica-
tion of the proposed model to real data, followed by
analysis of several groups of simulated wafer defect
maps. The numerical experiments indicate that, when
the spatial dependency is high, the proposed model
offers a greater improvement in performance. How-
ever, even when the spatial correlation is rather low, the
model’s fitting performance remains reasonable. Char-
acteristics that are not captured by the macro-scale
coordinate-based tendency predictors can be covered
by the inclusion of random spatial errors.

In our proposed model, a spatial random com-
ponent introduces sufficient variations for the defect
rate distributions across a wafer. Simulated wafers in
the forth section also show that the distribution of
log(λi) = f (Xi)β + si will be affected by the distribu-
tion of si. With higher spatial dependence, there tends
to be more “zeros” occurring on the wafer map. Thus,
by adding spatial components, the over-dispersion
phenomenon in observed data can be effectively
captured.

Using the Bayesian framework, it is possible to esti-
mate parameters numerically and to construct a more
suitable and complex hierarchical model. Benefiting
from the MCMC method, the proposed hierarchical
Bayesian model can be rapidly solved. When the wafer
size increases, theMCMCmethodmay encounter time
consumption issues. We can adopt numerical approx-
imations, such as INLA, to accelerate computation
speed.

It is also worth noting that the method proposed
in this article is not limited to a single distribution
of data but rather can be extended as needed such
as using a Bernoulli or negative binomial distribu-
tion. A straightforwardmethod to adopt a zero-inflated
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model is to model the random shock probability pi as
logit(pi) = f (Xi)β + si and to model the Poisson rate
λi as log(λi) = g(Xi)β. However, it is difficult to say
that the spatial cluster phenomenon only exists in the
distribution of pi. Spatial dependency can be observed
both in the zero’s region and in the defect region. Thus,
in this initial work, we do not consider zero-inflated
models. The variations across sequential wafers could
also be investigated.
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